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Friction Coefficients and Correlation Times for Anisotropic Rotational Diffusion of
Molecules in Liquids Obtained from Hydrodynamic Models and $3C Relaxation Data
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A hydrodynamic model is presented to describe fully anisotropic rotational dynamics of asymmetric ellipsoids
in liquids. The model by Gierer and Wirtz is extended to deal with anisotropic rotations and combined with
the model by Youngren and Acrivos for slip boundary conditions. The combined model is applied to obtain
the reorientational correlation times for the hydrocarbon 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-methanonaph-
thalene in different solvents. The results from these calculations are compared to experimental values from
13C nuclear relaxation data. Calculated and experimental results agree very well, and the new combined
model is believed to represent an important contribution for describing rotational molecular dynamics in
liquids.

Introduction to Gierer and Wirtz, that the surrounding fluid can be separated
into different spherical shells. For rotations about each of the
principal rotational diffusion axes these shells have radii
determined by the asymmetry of the ellipsoid. Subsequently,
this extension is combined with the anisotropic model by
Youngren and Acrivad (YA) with slip boundary conditions.
First the hydrodynamic models by Stoké<insteini314and
Debyel® Gierer and WirtZ% and Youngren and Acrivdsare
presented, and then the extended model by the present authors
is introduced. In the following section this new model is applied
(T to describe the molecular rotational dynamics for molecules of

Q) the hydrocarbon 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-methano-
naphthalene in different solvents. The calculated rotational
friction coefficients from the GW and YA models and the new
model are compared to experimental values determined from
13C relaxation data.

It is difficult to describe the dynamics of liquids on a
molecular level. In particular, the relation between rotational
correlation timesy and macroscopic viscosity is a topic of
permanent interest, but until now without a satisfactory theoreti-
cal solution. Itis well-known from a number of authbréthat
the experimentally determined rotational correlation tings
are found to be a linear function of macroscopic viscosity
over temperaturd:

Tp = Tp + Tred T

This relationship is verified by different experimental tech-
nigues, but a model to calculatg and 7.4 properly is still
lacking. Conventional hydrodynamics account for the linear
dependence on/T but are unable to accurately determing,
which is normally at least by a factor of 5 too large. The
constantry is generally not treated by hydrodynamic models. ~ General Remarks. For an asymmetric ellipsoid with semi-

Thus, various authors made attempts to extend the conven-a2xesa, b, ¢ and Cartesian coordinates y, z parallel to the
tional macroscopic hydrodynamic view to a description on a semiaxes the parameter equation is given by
more molecular level. The resulting quasi-hydrodynamic
models could be distinguished by the considerations taken into X2 + y2 i Z 1 @)

Hydrodynamic Models for Molecular Reorientations

account concerning the molecular shape, which might be based 2 P &
on spherical, symmetrical, or asymmetrical rotators, and con-

cerning the used boundary conditions. The agreement with the |t is assumed that the ellipsoid is rotating with a small angular
experimentally determined rotational behavior varies signifi- velocity @ in an infinite mass of a viscous incompressible liquid
cantly for these different hydrodynamic models. Comparative (vv = 0) with the velocity fieldv. The equation of motion for
investigations by Dote, Kivelson, and Schwarnd Harris and the surrounding fluid, referred to the principal axesy, z of
Newmarf and also investigations of hydrocarbons by the present the ellipsoid, is given in the diffusive limit by the creeping-
authorg show that none of the published models is able to flow Navier—Stokes equation

reproduce the correlation timesnd the anisotropy of the
molecular reorientational dynamics.

It is the aim of the present study to develop a new
hydrodynamic model that is able to give correct results for the
order of magnitude of the correlation times and to describe the with viscositys, densityp, and pressurp. The type of solution
anisotropy of rotational motions properly. Therefore, the for eq 3 depends on the assumed boundary conditions and is
spherical model by Gierer and Witz(GW) is extended for given by the velocity field. For that the hydrodynamic stress
fully anisotropic rotational dynamics. Itis assumed, analogous tensore is defined by

A=V 3)
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with ¢ = 1 fori = j ando; = 0 fori = j. From the stress  with the microviscosity factofew,

tensor the acting torqué is obtained with or \-e]-1
r ( rL)— ]—

few=1[6-+|1+— 10

T=~ [rx(on)dA=of (5) ew [ r r (10)

In the macroscopic limit > r., the microviscosity factor
becomes equal to unity, which reproduces the known SED
result; for neat liquidsew is approximately 1/6. Our eq 10 is
different from eq 2 in ref 10: Gierer and Wirtz did not quote
the factor of 2 in the solution of the integral following their eq
18, which results also in a missing factor of 2 in their eq 21,
giving a small error in calculated microviscosity factors.

For the rotational correlation time the following relation is
valid:

Here,A denotes the surface of the fluid layer amthe normal
vector on that surface. The fluid volume is limited on one side
by the ellipsoid surface and on the other side by a supposed
sphere of a very large radius having its center at the origin of
the ellipsoid. The relationship between the torque and the
angular velocityw is given by the symmetric friction tensgr
The friction tensor is diagonalized by choosing its coordinate
system being equal to the principal axis system of the ellipsoid.
ThenT,; = gjwi is the torque in thédirection for rotation about
the axisi, and the resulting elements are the rotational friction
coefficientsg = ;.

The correlation timey; for rotational motion about axisis
then given by

8anr?| I 2r \ =8|t
Tew = 6|:7T [GT + (1 + T) = Tsefow  (11)

Youngren and Acrivost! (YA). This model is an extension
& of the model by Hu and ZwanZigfor symmetrical ellipsoids
to the general case of asymmetric ellipsoids. Youngren and
Acrivos!! solved the linearized NavierStokes equation with
with the Boltzmann constarkt slip boundary conditions numerically for a number of surface
Stokes!2 Einstein,1314and Debyés (SED). The expression elements of.th.e observed ellipsoid qnd integrated over the whole
by Stoke? for the translational motion of a sphere in a fluid _surface._ Friction results from th_e displacement of the surrou_nd-
was used by Einstein in his studies on translatithahd ing medium when the nonspherical body rotates. They obtained
rotationat diffusion of small spherical particles in liquids. In  for the friction coefficients of an asymmetric ellipsoid with
order to describe dielectric relaxation, DeByebtained for the ~ Semiaxesa > b > c rotating about the three principal axes
isotropic rotational diffusion of a spherical molecule with radius

a under stick boundary conditions for the surrounding fluid (Cva)i= gmyaboli, i=xvy,z (12)
3
Topp = 8rna 7 with the dimensionless friction factdr depending on the ratios
6kT o = b/aandp = c/a of the semiaxes. After numerical solution

of the Navier-Stokes equation Youngren and Acrivos listed

values for friction coefficients in Table 1 of ref 11. This table,

Corp = 8y ®) however, lists actually the values for (4d@)i817 and not the
SED " Ai values as stated. The correct values are given by Sension

The surrounding medium was treated by Debye as a continu-"’moI Hochstras_sé?._ . L
The correlation times for rotations of the ellipsoid about the

ous fluid with no internal structure. However, this approach o
gives only a poor agreement between experimental and calcu-three principal axes are
lated molecular correlation times for molecules of small or 27mabc .
medium sizes. (Typ)i = Wii, i=XY,z (13)
Gierer and Wirtz 19 (GW). The latter assumption of the SED
model is a strong simplification and approximately valid only Extended Gierer—Wirtz —Youngren—Acrivos Model (EG-
for describing rotational dynamics of spherical macromolecules, \wyA). Some authors have shown, and further investigations
since their size is normally much larger than that of the solvent of the present authdtsvill demonstrate, that by application of
molecules. However, when the solvent molecules are of the GW model the best agreement between experimental and
comparable size to the solute molecules or of the same size agalculated isotropic rotational correlation times is obtained for
in the case of neat liquids, the surrounding medium cannot be 3 number of different molecules when compared to other
assumed to be continuous, and the discrete character of thenydrodynamic models. Thus, it appeared straightforward to
medium has to be considered. develop an anisotropic extension of the GW model to the general
The fact that the diffusing molecules are embedded in a case of asymmetric ellipsoids. First, we tried to adopt the
structured and noncontinuous fluid was taken into account by procedure of Gierer and Wirtz and to solve the hydrodynamic
Gierer and WirtZ2 In their model it was assumed that the equations for e||ipsoids by emp|0ying the expressiamsz a
moving molecule has a spherical shape with radiasd that ~ + m| with i = x, y, z in the integration over the ellipsoidal
it is surrounded by onion-like shells consisting of spherical surface and then summing up the resulting elliptic integrals over
solvent molecules with radius. The GW model appears to  the surrounding shells. However, this led to very complex
be a model with stick boundary conditions but Considering the expressions_ Since it was one aim of the present Study to
discrete nature of the surrounding fluid. The resulting friction develop a simple model that is easily applied to different liquids,
coefficientZew for a rotating spherical molecule is then given  the procedure described in the following was applied.

and thus for the friction coefficient

by It was assumed that the spherical shell model of Gierer and
1 Wirtz is also applicable to asymmetric ellipsoids; that is the
Cow = 8\7‘[17r3 = 9) ellipsoidal shape of the rotating bodies was approximated by
n 2 spheres with a different radius for rotation about each of the
6—+ |1+ N . L .
r r ellipsoidal semiaxes. To take the ellipsoidal shape into account,
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the corresponding radii are asymmetry-weighted averages overThe remaining sum may now be replaced by an integral over
the semiaxes of the ellipsoid. This assumption seemed to bethe shells:

reasonable, because the real velocity fielttound the ellipsoid

appears to be more or less spherical at distances of 3 or 4 times

the ellipsoidal diameter from the ellipsoid, and it seems to be
difficult to identify whether there is a sphere or an ellipsoid
rotating in the center.

The calculation of this mean raditisis demonstrated for
the rotation of the ellipsoid described by eq 2 about xhe
direction. The mean radius is proportional to the geometrical
average of the two semiaxes perpendiculax:tory [ N
which means making the ellipsoid symmetrical in jfzglane.

To consider the asymmetry in the direction of the rotation axis
X, into accounty/bc is weighted by the ratio of the ellipsoidal

size Vavbc in direction x and the average radius’bc
perpendicular to:

:Va«/&\/&

© Ve

= a4(ho)*

(14)

Here,vavhbc is the geometrical average of the semiaxim
direction x and the average radiugbc perpendicular tox.
The other two mean radii far=y, z were obtained by cyclic
permutation. The result is a conversion of the asymmetric

ellipsoidal geometry to an averaged spherical geometry but with

a different radius for rotation about each of the principal axes
of the ellipsoid.

Now the friction coefficients can easily be calculated quite
analogously to the procedure of Gierer and Wirtz by using the
averaged radiiug; in the expression for the radius of tiath
shell around the ellipsoid:

R,=T,+ml, m=0,1,2,3, ..

andi=xy,z (15)

> I
00

dm (29)

Zrs

The resulting friction coefficientsiggw)i for rotation of the
ellipsoidal molecule about the principal axes are then given by

1
= 8nnabc
(CEGW)X n 12r_|_ R (bC)lM
1/2 4rL 3
a + -
al/2(b0)1/4
1
= 8npabc 20
(CEGW)y n 12!’,_ . (ac)1/4 ( )
h 3
1/2 L
b=+ bl/z(ac)lm)
1
= 8npabc
(gEGW)Z n 12r|_ . (ab)1/4
1/2 4rL 3
C1/2(ab)1/4

For the thickness$ of the surrounding shells a geometrically
averaged radiug. = 2(a_b.c )3 was used with = 2r_. To
emphasize the effect of the asymmetry of the surrounding
particles, it was found necessary to take double of the geo-
metrical average for,.

The corresponding rotational correlation times are

 (Ceow)i
~ 6kT

(Tecw; and i=xy,z (21)

Since the rotation of an asymmetric ellipsoid is considered,

The surrounding solvent molecules were approximated to bethe displacement of the surrounding fluid also has to be taken

spheres with thickneds Then, the torque exerted by rotation
of a neighboring shell is

3

W (16)

with the angle velocityvm; of shellmrelative to the neighboring
shell.

To obtain the friction coefficientsiggw)i for rotation of the
ellipsoidal molecule in the first solvent shell, the total angle
velocity w; resulting from the sum over the velocities of each
shellwi = 3, _,wmi has to be calculated:

T

(Ceow)i = = =
Wi

1

<o
#or,

The sum can be separated into a dominant parbfer 0 and
a remaining term:

8

3

(17)

00

| |
Bt

>

i

(18)

into account, and thus the friction coefficients resulting from
the Youngrenr-Acrivos model are added. The total friction is
given just by the sum of these two frictional contributions:

(Ceowva)i = (Ceow)i T (Eva); (22)
and thus
_ (Ceowva) _
(Teowya)i = kT (Teaw)i T (Teaw)i (23)

Results and Discussion

To demonstrate the quality of the applied models (GW, YA,
and EGWYA), the experimental and calculated reorientational
correlation timesty; for 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-
methanonaphthalene (5,6-MEHMN, 1) are compared in Table
1. The experimental correlation times were obtained ftét
relaxation data for solutions of compoutd0.12 mol kgt) in
the solvents JH,]dichloromethane, 2Hg]benzene, and2H,]-
tetrachloroethane at a temperature of 308 K. The valueg®f
in eq 1 were calculated from the models and equated toghe
with the assumption that they can be neglected. The
orientation of the principal coordinate system parallel to the
semiaxes of the ellipsoid is shown in Figure 1.

As can be seen from the experimentally determined rotational
correlation times, the 5,6-MerTHMN molecules rotate aniso-
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TABLE 1: Experimental and Calculated Reorientational Correlation Times 75 and Relative Errors A for 0.12 mol kg™
5,6-Me-THMN in the Solvents [2H;]Dichloromethane, BH¢]Benzene, and H,]Tetrachloroethane at a Temperature of T = 308
K

solvent ToxIPS (A/%) Toy/PS (A/%) Todps (A1%)
[2H]dichloromethane experimental 7.37 125 5.67
GW 9.14 (24) 9.14 £27) 9.14 (61)
YA 1.04 (—86) 4.74 ¢62) 1.48 €74)
EGWYA 7.05 4) 9.53 24) 5.38 €5)
[Hg]benzene experimental 7.01 13.2 5.99
GW 10.9 (55) 10.9 €17) 10.9 (82)
YA 1.35 (-81) 6.13 £54) 1.92 ¢68)
EGWYA 8.44 (21) 11.8 €11) 6.51 9)
[2H.]tetrachloroethane experimental 20.5 41.6 14.3
233 (14) 233 +44) 233 (63)
3.26 (—84) 14.9 £64) 4.65 €77)
18.5 -10) 27.0 45) 145 1)

Figure 1. Molecular structure of 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-
methanonaphthalene with respect to the orientation of the principal axis
system of the inertial tensor and of the semiaae®, andc of the
ellipsoid.

tropically, and the anisotropy is approximately the same for all
three solutions. When the experimental correlation times are
compared to those calculated by the models GW, YA, and
EGWYA, the following conclusions can be drawn.

(i) The calculated isotropic correlation times from the GW
model have the correct order of magnitude but are of course
unable to describe the anisotropy of the reorientational dynamics

(i) The YA model neither reproduces the magnitude of the
correlation times nor describes the anisotropy correctly. All
rotational correlation times are underestimated by the model;
the relative differenc@ between model and experimental values
ranges from-54 t0—86%. Furthermore, the order of the model
correlation timesx;, z, y) is not the same as for the experimental
ones g, X, y).

(iii) The presented EGWYA model not only gives the correct
order of magnitude for the correlation times but also reproduces
the anisotropy. Only the rotation about thexis is systemati-
cally calculated too small for all solutions-(1 to —45%),

asymmetric ellipsoids and the anisotropic model of Youngren
and Acrivost! is a significant improvement compared to the
semi-hydrodynamic models discussed in the literature. The
EGWYA model is able to give the rotational correlation times
in the correct order of magnitudadto reproduce the anisotropy

of the rotational dynamics for the investigated hydrocarbon
molecules interacting with the solvent mainly by van der Waals
interactions. Further investigations are necessary to prove
whether the new model is also valid for other types of solutions.

Methods

Densities were measured at 308 K with the digital densito-
meter DMA 10 by Heraeus and viscosities with the micro
falling-sphere viscosimeter by Haake Me§schnik. NMR
measurements were performed on a Bruker AM 250 spectrom-
eter Bp = 5.875 T,vo(*H) = 250.13 MHz,vo(*3C) = 62.90
MHz, the deuterated solvents as internal lock). Dipdfd
relaxation times were obtained by measurement of i@
relaxation times and the corresponding nuclear Overhauser
-factors at a temperature of 308 K. The splattice relaxation
times were determined by the inversierecovery pulse se-
guence undetH broad-band decoupling and repeated 5 times;
those for the NOE factors 10 times. The splattice relaxation
times and NOE factors were extracted from signal heights; the
relaxation times were calculated by a three-parameter expo-
nential fitimplemented in the spectrometer software. The mean
standard deviations of the mean experimental data were below
3% for the relaxation times and less than 7% for the NOE
factors. The error in the temperature was estimated té&be
K. The concentration of the 5,6-Md@HMN was 0.12 mol kg?
in the investigated 2H;]dichloromethane, ZH¢]benzene, and

whereas the calculated values for rotations about the other two[2,jtetrachloroethane solutions. Further details concerning

axes show positive as well as negative deviatiornB)(to 21%).
The deviations could result from the fact that the model is only
dealing with idealized asymmetric ellipsoids. But the geometry
of 5,6-Me-THMN s, as shown in Figure 1, different from an
ellipsoidal one. Additionally, for the concentrationsloh the
investigated solutions solutesolute interactions could not be
excluded.

(iv) The three hydrodynamic models GW, YA, and EGWYA
give an approximately correct description of reorientational
dynamics. This illustrates the fact that the dynamics of liquids,
in which the molecules interact mainly by van der Waals

picture the fluid surrounding the moving molecules as being
more or less homogeneous.
Conclusions

The presented model EGWYA, given as a combination of
an anisotropic extension of the model by Gierer and \Mitiz

experimental techniques and sample preparation are given in
ref 20.

The experimental rotational correlation times were calculated

from the dipolart3C relaxation times by use of the Woessfier
formalism and application of the FORTRAN program MAIN.
It was assumed that the rotational diffusion principal axis system
coincides with the principal axis system of inertia. The possible
error resulting from this assumption is less than 10% in the
determination of the correlation times.

The molecular geometry df was obtained from a geometry
optimization using the AM1 metha#in the MOPAC program
tpackage?.2 To obtain the ellipsoidal semiaxes, the principal axes
of the ellipsoid were chosen to be parallel to the principal axes
of inertia. By considering the van der Waals radii of the atoms,
the longest distances in these three directions determine the
semiaxes. Thus, the whole van der Waals volume of the
observed molecule is inside the so-defined asymmetric ellipsoid.
The error in the rotational correlation times choosing the
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semiaxes in this way is supposed to be less than 10%. The (2) Boerg R. T.; Kidd R. G.Annu. Rep. NMR Spectrost982 13,

molecular structure of the 5,6-M@HMN and the surrounding (3) Dote, J. L.; Kivelson, D.; Schwartz, R. N. Phys. Chem1981

ellipsoid is presented in Figure 1. The lengths of the semiaxesgs 7169,

area = 518 pm,b = 412 pm, ancc = 335 pm. To calculate (4) Kivelson, D.Symp. Faraday Sod.977, 11, 7.

the rotational correlation times for the hydrodynamic models, 523(5) Kivelson, D.; Madden, P. AAnnu. Re. Phys. Chem198Q 31,

the macroscopic viscosities of the investigated solutions were < .
6) Kivelson, D.Lect. Notes Phys1987, 293 1.

measured at a temperature f= 308 K: #(5,6-Me-THMN (6) Kivelson goh e 3

. - ! (7) Tyrrell, H. J. V.; Harris, K. RDiffusion in Liquids Butterworths:
in [2H,]dichloromethane}= 0.533 mPasy(5,6-Me-THMN in London, 1984.

[Hg]benzene)= 0.691 mPas, ang(5,6-Me-THMN in [2H;]- gg Elaurris. Rl;. léi; %%WmAanﬁ'R'bFMOIBIFEySleQ 38, 1315.
i H uner, R. P.; e, A. 10 be published.
tetrachlorrcl)ethalneT 1.685 fmrf’ a:;,._ The corrf?_spondlng ragli (10) Gierer, A.; Wirtz, K.Z. Naturforsch.1953 8a, 532.
used in the calculation o .t e friction coefficients were 537, (11) Youngren, G. K. Acrivos, AJ. Chem. Phys1975 63, 3846.
590, and 670 pm, respectively. (12) Stokes, G. GTrans. Cambridge Philos. Sot:856 9, 8.
(13) E@nste!n, A.Ann. Phys1905 17, 549.
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