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A hydrodynamic model is presented to describe fully anisotropic rotational dynamics of asymmetric ellipsoids
in liquids. The model by Gierer and Wirtz is extended to deal with anisotropic rotations and combined with
the model by Youngren and Acrivos for slip boundary conditions. The combined model is applied to obtain
the reorientational correlation times for the hydrocarbon 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-methanonaph-
thalene in different solvents. The results from these calculations are compared to experimental values from
13C nuclear relaxation data. Calculated and experimental results agree very well, and the new combined
model is believed to represent an important contribution for describing rotational molecular dynamics in
liquids.

Introduction

It is difficult to describe the dynamics of liquids on a
molecular level. In particular, the relation between rotational
correlation timesτθ and macroscopic viscosityη is a topic of
permanent interest, but until now without a satisfactory theoreti-
cal solution. It is well-known from a number of authors1-7 that
the experimentally determined rotational correlation timesτθ
are found to be a linear function of macroscopic viscosityη
over temperatureT:

This relationship is verified by different experimental tech-
niques, but a model to calculateτ0 and τred properly is still
lacking. Conventional hydrodynamics account for the linear
dependence onη/T but are unable to accurately determineτred,
which is normally at least by a factor of 5 too large. The
constantτ0 is generally not treated by hydrodynamic models.
Thus, various authors made attempts to extend the conven-

tional macroscopic hydrodynamic view to a description on a
more molecular level. The resulting quasi-hydrodynamic
models could be distinguished by the considerations taken into
account concerning the molecular shape, which might be based
on spherical, symmetrical, or asymmetrical rotators, and con-
cerning the used boundary conditions. The agreement with the
experimentally determined rotational behavior varies signifi-
cantly for these different hydrodynamic models. Comparative
investigations by Dote, Kivelson, and Schwartz3 and Harris and
Newman8 and also investigations of hydrocarbons by the present
authors9 show that none of the published models is able to
reproduce the correlation timesand the anisotropy of the
molecular reorientational dynamics.
It is the aim of the present study to develop a new

hydrodynamic model that is able to give correct results for the
order of magnitude of the correlation times and to describe the
anisotropy of rotational motions properly. Therefore, the
spherical model by Gierer and Wirtz10 (GW) is extended for
fully anisotropic rotational dynamics. It is assumed, analogous

to Gierer and Wirtz, that the surrounding fluid can be separated
into different spherical shells. For rotations about each of the
principal rotational diffusion axes these shells have radii
determined by the asymmetry of the ellipsoid. Subsequently,
this extension is combined with the anisotropic model by
Youngren and Acrivos11 (YA) with slip boundary conditions.
First the hydrodynamic models by Stokes,12 Einstein,13,14 and
Debye,15 Gierer and Wirtz,10 and Youngren and Acrivos11 are
presented, and then the extended model by the present authors
is introduced. In the following section this new model is applied
to describe the molecular rotational dynamics for molecules of
the hydrocarbon 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-methano-
naphthalene in different solvents. The calculated rotational
friction coefficients from the GW and YA models and the new
model are compared to experimental values determined from
13C relaxation data.

Hydrodynamic Models for Molecular Reorientations

General Remarks. For an asymmetric ellipsoid with semi-
axesa, b, c and Cartesian coordinatesx, y, z parallel to the
semiaxes the parameter equation is given by

It is assumed that the ellipsoid is rotating with a small angular
velocityω in an infinite mass of a viscous incompressible liquid
(∇v ) 0) with the velocity fieldv. The equation of motion for
the surrounding fluid, referred to the principal axesx, y, z of
the ellipsoid, is given in the diffusive limit by the creeping-
flow Navier-Stokes equation

with viscosityη, densityF, and pressurep. The type of solution
for eq 3 depends on the assumed boundary conditions and is
given by the velocity field. For that the hydrodynamic stress
tensorσ is defined by
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with δij ) 1 for i ) j andδij ) 0 for i * j. From the stress
tensor the acting torqueT is obtained with

Here,A denotes the surface of the fluid layer andn the normal
vector on that surface. The fluid volume is limited on one side
by the ellipsoid surface and on the other side by a supposed
sphere of a very large radius having its center at the origin of
the ellipsoid. The relationship between the torque and the
angular velocityω is given by the symmetric friction tensorú.
The friction tensor is diagonalized by choosing its coordinate
system being equal to the principal axis system of the ellipsoid.
ThenTi ) úiiωi is the torque in thei direction for rotation about
the axisi, and the resulting elements are the rotational friction
coefficientsúi t úii.
The correlation timeτθi for rotational motion about axisi is

then given by

with the Boltzmann constantk.
Stokes,12 Einstein,13,14and Debye15 (SED). The expression

by Stokes12 for the translational motion of a sphere in a fluid
was used by Einstein in his studies on translational13 and
rotational14 diffusion of small spherical particles in liquids. In
order to describe dielectric relaxation, Debye15 obtained for the
isotropic rotational diffusion of a spherical molecule with radius
a under stick boundary conditions for the surrounding fluid

and thus for the friction coefficient

The surrounding medium was treated by Debye as a continu-
ous fluid with no internal structure. However, this approach
gives only a poor agreement between experimental and calcu-
lated molecular correlation times for molecules of small or
medium sizes.
Gierer and Wirtz 10 (GW). The latter assumption of the SED

model is a strong simplification and approximately valid only
for describing rotational dynamics of spherical macromolecules,
since their size is normally much larger than that of the solvent
molecules. However, when the solvent molecules are of
comparable size to the solute molecules or of the same size as
in the case of neat liquids, the surrounding medium cannot be
assumed to be continuous, and the discrete character of the
medium has to be considered.
The fact that the diffusing molecules are embedded in a

structured and noncontinuous fluid was taken into account by
Gierer and Wirtz.10 In their model it was assumed that the
moving molecule has a spherical shape with radiusr and that
it is surrounded by onion-like shells consisting of spherical
solvent molecules with radiusrL. The GW model appears to
be a model with stick boundary conditions but considering the
discrete nature of the surrounding fluid. The resulting friction
coefficientúGW for a rotating spherical molecule is then given
by

with the microviscosity factorfGW,

In the macroscopic limitr . rL, the microviscosity factor
becomes equal to unity, which reproduces the known SED
result; for neat liquidsfGW is approximately 1/6. Our eq 10 is
different from eq 2 in ref 10: Gierer and Wirtz did not quote
the factor of 2 in the solution of the integral following their eq
18, which results also in a missing factor of 2 in their eq 21,
giving a small error in calculated microviscosity factors.
For the rotational correlation time the following relation is

valid:

Youngren and Acrivos11 (YA). This model is an extension
of the model by Hu and Zwanzig16 for symmetrical ellipsoids
to the general case of asymmetric ellipsoids. Youngren and
Acrivos11 solved the linearized Navier-Stokes equation with
slip boundary conditions numerically for a number of surface
elements of the observed ellipsoid and integrated over the whole
surface. Friction results from the displacement of the surround-
ing medium when the nonspherical body rotates. They obtained
for the friction coefficients of an asymmetric ellipsoid with
semiaxesa > b > c rotating about the three principal axesi

with the dimensionless friction factorλi depending on the ratios
R ) b/a andâ ) c/a of the semiaxes. After numerical solution
of the Navier-Stokes equation Youngren and Acrivos listed
values for friction coefficients in Table 1 of ref 11. This table,
however, lists actually the values for (4/3)Râλi8,17 and not the
λi values as stated. The correct values are given by Sension
and Hochstrasser.17

The correlation times for rotations of the ellipsoid about the
three principal axes are

Extended Gierer-Wirtz-Youngren-Acrivos Model (EG-
WYA). Some authors have shown, and further investigations
of the present authors9 will demonstrate, that by application of
the GW model the best agreement between experimental and
calculated isotropic rotational correlation times is obtained for
a number of different molecules when compared to other
hydrodynamic models. Thus, it appeared straightforward to
develop an anisotropic extension of the GWmodel to the general
case of asymmetric ellipsoids. First, we tried to adopt the
procedure of Gierer and Wirtz and to solve the hydrodynamic
equations for ellipsoids by employing the expressionsRmi ) a
+ ml with i ) x, y, z in the integration over the ellipsoidal
surface and then summing up the resulting elliptic integrals over
the surrounding shells. However, this led to very complex
expressions. Since it was one aim of the present study to
develop a simple model that is easily applied to different liquids,
the procedure described in the following was applied.
It was assumed that the spherical shell model of Gierer and

Wirtz is also applicable to asymmetric ellipsoids; that is the
ellipsoidal shape of the rotating bodies was approximated by
spheres with a different radius for rotation about each of the
ellipsoidal semiaxes. To take the ellipsoidal shape into account,

T ) -∫Ar×(σn) dA) ωú (5)

τθi )
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6kT
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6kT
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6
rL
r
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2rL
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the corresponding radii are asymmetry-weighted averages over
the semiaxes of the ellipsoid. This assumption seemed to be
reasonable, because the real velocity fieldv around the ellipsoid
appears to be more or less spherical at distances of 3 or 4 times
the ellipsoidal diameter from the ellipsoid, and it seems to be
difficult to identify whether there is a sphere or an ellipsoid
rotating in the center.
The calculation of this mean radiusrji is demonstrated for

the rotation of the ellipsoid described by eq 2 about thex
direction. The mean radius is proportional to the geometrical
average of the two semiaxes perpendicular tox: rjx ∝ xbc,
which means making the ellipsoid symmetrical in theyzplane.
To consider the asymmetry in the direction of the rotation axis
x, into account,xbc is weighted by the ratio of the ellipsoidal
size xaxbc in direction x and the average radiusxbc
perpendicular tox:

Here,xaxbc is the geometrical average of the semiaxisa in
direction x and the average radiusxbc perpendicular tox.
The other two mean radii fori ) y, zwere obtained by cyclic
permutation. The result is a conversion of the asymmetric
ellipsoidal geometry to an averaged spherical geometry but with
a different radius for rotation about each of the principal axes
of the ellipsoid.
Now the friction coefficients can easily be calculated quite

analogously to the procedure of Gierer and Wirtz by using the
averaged radiiusrji in the expression for the radius of themth
shell around the ellipsoid:

The surrounding solvent molecules were approximated to be
spheres with thicknessl. Then, the torque exerted by rotation
of a neighboring shell is

with the angle velocityωmi of shellm relative to the neighboring
shell.
To obtain the friction coefficients (úEGW)i for rotation of the

ellipsoidal molecule in the first solvent shell, the total angle
velocity ωi resulting from the sum over the velocities of each
shellωi ) ∑m)0

∞ ωmi has to be calculated:

The sum can be separated into a dominant part form) 0 and
a remaining term:

The remaining sum may now be replaced by an integral over
the shells:

The resulting friction coefficients (úEGW)i for rotation of the
ellipsoidal molecule about the principal axes are then given by

For the thicknessl of the surrounding shells a geometrically
averaged radiusrL ) 2(aLbLcL)1/3 was used withl ) 2 rL. To
emphasize the effect of the asymmetry of the surrounding
particles, it was found necessary to take double of the geo-
metrical average forrL.
The corresponding rotational correlation times are

Since the rotation of an asymmetric ellipsoid is considered,
the displacement of the surrounding fluid also has to be taken
into account, and thus the friction coefficients resulting from
the Youngren-Acrivos model are added. The total friction is
given just by the sum of these two frictional contributions:

and thus

Results and Discussion

To demonstrate the quality of the applied models (GW, YA,
and EGWYA), the experimental and calculated reorientational
correlation timesτθi for 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-
methanonaphthalene (5,6-Me2-THMN, 1) are compared in Table
1. The experimental correlation times were obtained from13C
relaxation data for solutions of compound1 (0.12 mol kg-1) in
the solvents [2H2]dichloromethane, [2H6]benzene, and [2H2]-
tetrachloroethane at a temperature of 308 K. The values ofτred,i
in eq 1 were calculated from the models and equated to theτθi
with the assumption that theτ0i can be neglected. The
orientation of the principal coordinate system parallel to the
semiaxes of the ellipsoid is shown in Figure 1.
As can be seen from the experimentally determined rotational

correlation times, the 5,6-Me2-THMN molecules rotate aniso-
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tropically, and the anisotropy is approximately the same for all
three solutions. When the experimental correlation times are
compared to those calculated by the models GW, YA, and
EGWYA, the following conclusions can be drawn.
(i) The calculated isotropic correlation times from the GW

model have the correct order of magnitude but are of course
unable to describe the anisotropy of the reorientational dynamics.
(ii) The YA model neither reproduces the magnitude of the

correlation times nor describes the anisotropy correctly. All
rotational correlation times are underestimated by the model;
the relative difference∆ between model and experimental values
ranges from-54 to-86%. Furthermore, the order of the model
correlation times (x, z, y) is not the same as for the experimental
ones (z, x, y).
(iii) The presented EGWYA model not only gives the correct

order of magnitude for the correlation times but also reproduces
the anisotropy. Only the rotation about they axis is systemati-
cally calculated too small for all solutions (-11 to -45%),
whereas the calculated values for rotations about the other two
axes show positive as well as negative deviations (-10 to 21%).
The deviations could result from the fact that the model is only
dealing with idealized asymmetric ellipsoids. But the geometry
of 5,6-Me2-THMN is, as shown in Figure 1, different from an
ellipsoidal one. Additionally, for the concentrations of1 in the
investigated solutions solute-solute interactions could not be
excluded.
(iv) The three hydrodynamic models GW, YA, and EGWYA

give an approximately correct description of reorientational
dynamics. This illustrates the fact that the dynamics of liquids,
in which the molecules interact mainly by van der Waals
interactions, can be represented by hydrodynamic models that
picture the fluid surrounding the moving molecules as being
more or less homogeneous.

Conclusions

The presented model EGWYA, given as a combination of
an anisotropic extension of the model by Gierer and Wirtz10 to

asymmetric ellipsoids and the anisotropic model of Youngren
and Acrivos,11 is a significant improvement compared to the
semi-hydrodynamic models discussed in the literature. The
EGWYA model is able to give the rotational correlation times
in the correct order of magnitudeandto reproduce the anisotropy
of the rotational dynamics for the investigated hydrocarbon
molecules interacting with the solvent mainly by van der Waals
interactions. Further investigations are necessary to prove
whether the new model is also valid for other types of solutions.

Methods

Densities were measured at 308 K with the digital densito-
meter DMA 10 by Heraeus and viscosities with the micro
falling-sphere viscosimeter by Haake Mess-Technik. NMR
measurements were performed on a Bruker AM 250 spectrom-
eter (B0 ) 5.875 T,ν0(1H) ) 250.13 MHz,ν0(13C) ) 62.90
MHz, the deuterated solvents as internal lock). Dipolar13C
relaxation times were obtained by measurement of the13C
relaxation times and the corresponding nuclear Overhauser
factors at a temperature of 308 K. The spin-lattice relaxation
times were determined by the inversion-recovery pulse se-
quence under1H broad-band decoupling and repeated 5 times;
those for the NOE factors 10 times. The spin-lattice relaxation
times and NOE factors were extracted from signal heights; the
relaxation times were calculated by a three-parameter expo-
nential fit implemented in the spectrometer software. The mean
standard deviations of the mean experimental data were below
3% for the relaxation times and less than 7% for the NOE
factors. The error in the temperature was estimated to be(1
K. The concentration of the 5,6-Me2-THMN was 0.12 mol kg-1

in the investigated [2H2]dichloromethane, [2H6]benzene, and
[2H2]tetrachloroethane solutions. Further details concerning
experimental techniques and sample preparation are given in
ref 20.
The experimental rotational correlation times were calculated

from the dipolar13C relaxation times by use of the Woessner18

formalism and application of the FORTRAN program MAIN.19

It was assumed that the rotational diffusion principal axis system
coincides with the principal axis system of inertia. The possible
error resulting from this assumption is less than 10% in the
determination of the correlation times.
The molecular geometry of1was obtained from a geometry

optimization using the AM1 method21 in the MOPAC program
package.22 To obtain the ellipsoidal semiaxes, the principal axes
of the ellipsoid were chosen to be parallel to the principal axes
of inertia. By considering the van der Waals radii of the atoms,
the longest distances in these three directions determine the
semiaxes. Thus, the whole van der Waals volume of the
observed molecule is inside the so-defined asymmetric ellipsoid.
The error in the rotational correlation times choosing the

TABLE 1: Experimental and Calculated Reorientational Correlation Times τθi and Relative Errors ∆ for 0.12 mol kg-1

5,6-Me2-THMN in the Solvents [2H2]Dichloromethane, [2H6]Benzene, and [2H2]Tetrachloroethane at a Temperature ofT ) 308
K

solvent τθx/ps (∆/%) τθy/ps (∆/%) τθz/ps (∆/%)

[2H2]dichloromethane experimental 7.37 12.5 5.67
GW 9.14 (24) 9.14 (-27) 9.14 (61)
YA 1.04 (-86) 4.74 (-62) 1.48 (-74)
EGWYA 7.05 (-4) 9.53 (-24) 5.38 (-5)

[2H6]benzene experimental 7.01 13.2 5.99
GW 10.9 (55) 10.9 (-17) 10.9 (82)
YA 1.35 (-81) 6.13 (-54) 1.92 (-68)
EGWYA 8.44 (21) 11.8 (-11) 6.51 (9)

[2H2]tetrachloroethane experimental 20.5 41.6 14.3
GW 23.3 (14) 23.3 (-44) 23.3 (63)
YA 3.26 (-84) 14.9 (-64) 4.65 (-77)
EGWYA 18.5 (-10) 27.0 (-45) 14.5 (1)

Figure 1. Molecular structure of 5,6-dimethyl-1,2,3,4-tetrahydro-1,4-
methanonaphthalene with respect to the orientation of the principal axis
system of the inertial tensor and of the semiaxesa, b, andc of the
ellipsoid.

1660 J. Phys. Chem. A, Vol. 101, No. 9, 1997 Klüner and Do¨lle



semiaxes in this way is supposed to be less than 10%. The
molecular structure of the 5,6-Me2-THMN and the surrounding
ellipsoid is presented in Figure 1. The lengths of the semiaxes
area ) 518 pm,b ) 412 pm, andc ) 335 pm. To calculate
the rotational correlation times for the hydrodynamic models,
the macroscopic viscosities of the investigated solutions were
measured at a temperature ofT ) 308 K: η(5,6-Me2-THMN
in [2H2]dichloromethane)) 0.533 mPas,η(5,6-Me2-THMN in
[2H6]benzene)) 0.691 mPas, andη(5,6-Me2-THMN in [2H2]-
tetrachloroethane)) 1.685 mPas. The corresponding radiirL
used in the calculation of the friction coefficients were 537,
590, and 670 pm, respectively.
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(2) Boeré, R. T.; Kidd R. G.Annu. Rep. NMR Spectrosc.1982, 13,
319.

(3) Dote, J. L.; Kivelson, D.; Schwartz, R. N.J. Phys. Chem.1981,
85, 2169.

(4) Kivelson, D.Symp. Faraday Soc.1977, 11, 7.
(5) Kivelson, D.; Madden, P. A.Annu. ReV. Phys. Chem.1980, 31,

523.
(6) Kivelson, D.Lect. Notes Phys.1987, 293, 1.
(7) Tyrrell, H. J. V.; Harris, K. R.Diffusion in Liquids; Butterworths:

London, 1984.
(8) Harris, R. K.; Newman, R. H.Mol. Phys.1979, 38, 1315.
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